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Abstract

3D shape is a crucial but heavily underutilized cue in object recognition, mostly
due to the lack of a good generic shape representation. With the recent boost of
inexpensive 2.5D depth sensors (e.g. Microsoft Kinect), it is even more urgent
to have a useful 3D shape model in an object recognition pipeline. Furthermore,
when the recognition has low confidence, it is important to have a fail-safe mode
for object recognition systems to intelligently choose the best view to obtain extra
observation from another viewpoint, in order to reduce the uncertainty as much as
possible. To this end, we propose to represent a geometric 3D shape as a probabil-
ity distribution of binary variables on a 3D voxel grid, using a Convolutional Deep
Belief Network. Our model naturally supports object recognition from 2.5D depth
map and also view planning for object recognition. We construct a large-scale 3D
computer graphics dataset to train our model, and conduct extensive experiments
to study this new representation.

1 Introduction

Since the establishment of computer vision as a field five decades ago, 3D geometric shape is con-
sidered to be one of the most important cues in object recognition. Even though there are many
theories about 3D representation [4, 18], the success of 3D-based methods is largely limited to in-
stance recognition, using model-based keypoint matching [20, 24]. For object category recognition,
3D shape is not used in any state-of-the-art recognition method (e.g. [9, 15]), mostly due to the lack
of a good generic representation for 3D geometric shapes. Furthermore, the recent boost of inexpen-
sive 2.5D depth sensors, such as Microsoft Kinect, Google Project Tango, Apple PrimeSense and
Intel RealSense, has led to a renewed interest in 2.5D object recognition from depth maps. Because
the depth from these sensors is very reliable, 3D shape can play a more important role in recognition.
It becomes more urgent to have a good 3D shape model in an object recognition pipeline.

On the other hand, object recognition is sometimes quite difficult, even for humans. It is possible
that we cannot confidently recognize an object from a particular viewpoint and we have to resolve
to another view to gather more observation for recognizing an object. This situation is even more
common for computer vision. Automatic object recognition systems today fail frequently [27], and
we desire a robust system that can recover from errors automatically. In particular, as shown in
Figure 2, if a robot cannot identify an object confidently from a given view, a fail-safe mode is
to allow the robot to move and observe the object from another viewpoint, in order to reduce the
uncertainty for recognition. This naturally raises the question for view planning: which next view is
the best for helping the robot to discriminate the object category?

To study shape representation and view planning for recognition, we propose to represent a geomet-
ric 3D shape as a probabilistic distribution of binary variables on a 3D voxel grid. This model, which
we name 3D ShapeNets, uses a powerful Convolutional Deep Belief Network (Figure 1) to learn the

†This work was done when Zhirong Wu was a visiting student at Princeton University.
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Figure 1: 2.5D Object Recognition and Next-Best-View Prediction using 3D ShapeNets. Given
a depth map of an object (e.g. from RGB-D sensors), we convert the depth map into a volumetric
representation and identify the observed surface and free space. Conditioned on these observed vox-
els, we use our 3D ShapeNets model to identify the object category. If the recognition is ambiguous,
we use our 3D ShapeNets model to predict which next view is the best view that has the greatest
potential to reduce the recognition uncertainty. Then, a new view is selected and a new depth map
is observed. We integrate both views to the volumetric representation and use our 3D ShapeNets to
recognize the category. If the uncertainty is still high, the same process will be repeated.

complex joint distribution of all 3D voxels from the data automatically. To train this deep model, we
also construct a large scale high quality object dataset, called ModelNet, which includes 127,915 3D
computer graphics CAD models. Extensive experiments show that we can use these CAD models
for training, to recognize objects in single-view 2.5D depth images and hallucinate the missing parts
of the shape of an object. Last but not least, our model can also predict the next-best-view in view
planning for object recognition.

1.1 Related Works

Researchers have built deep model for 2D shapes: most notably DBN [12] to generate handwrit-
ten digits and ShapeBM [8] to generate horses etc. Samples from these model are able to capture
intra-class varieties. We also desire this generative ability but we are interested in modeling com-
plex shapes in 3D. For deep learning on RGB-D images, [23] built a convolutional-recursive neural
network. Although their algorithm runs on depth maps, they didn’t explicitly build a model in 3D.
Instead, we try to have a model to learn a shape distribution over a voxel grid. To deal with the
difficulty of high resolution voxels, we apply the convolution technique in lower layers. [17] used a
same technique but their deep model is primary for unsupervised feature extraction1, which means
a separate discriminative classifier is being trained afterward on top of that. Here, we use a single
convolutional DBN framework to do reconstruction and recognition.

Unlike static object recognition by a single image, active object recognition allows the sensor to
gain more information by moving to new view points. Therefore, the Next-Best-View problem
[21] of how to do view planning based on current observation arises. Previous work of [13, 7]
considered only color information while we use depth information since we are more interested in
object shapes. [6] approached the problem without having prior knowledge of object appearance
distributions. [1, 2] implemented the idea into real world robots, but they assumed there is only
one object associated with each class so their problem boiled down to instance level and no intra-
class variance was considered. Same with our algorithm, [7] also use mutual information to decide
the NBV. However, the only extracted a single scalar (mean gray value of the picture) as feature
representation, so most of their experiments are preliminary. We consider this problem to the voxel
level so that we can tell how voxels in a 3D region would contribute to the reduction of recognition
uncertainty. This is not possible without a powerful model directly operated on voxels.

1The model is precisely a convolutional DBM where all the connections are undirected.
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(a) Architecture of our 3D
ShapeNets. For simplicity,
we only show one filter for
each convolutional layer.
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(b) Data-driven visualization: For each neuron, we average the top 100 train-
ing examples with highest responses (>0.99) and crop the volume inside the
receptive field. The averaged result is visualized by transparency in 3D (Gray)
and by the average surface obtained from the zero-crossing (Red). We can see
that 3D ShapeNets is able to capture complex structures in 3D space, from
low-level surfaces and corners at L1, to objects parts at L2 and L3, and whole
objects at L4 and above.

Figure 2: 3D ShapeNets. Architecture and sample visualization from different layers.

2 3D ShapeNets: A Convolutional Deep Belief Network for 3D Shapes
To study shape representation and view planning for recognition, we propose to represent a geomet-
ric 3D shape as a probability distribution of binary variables on a 3D voxel grid. Each 3D mesh is
represented as a binary tensor: 1s indicate the voxels on or inside the mesh surface, and 0s indicate
the voxels outside the mesh (i.e. empty space). The grid size in our experiments is 48× 48× 48.

To represent the probability distribution of these binary variables for 3D shapes, we designed a
Convolutional Deep Belief Network (CDBN). Deep Belief Network (DBN) [12] is a powerful prob-
abilistic model for binary variables that is typically used for 2D images where they modeled the joint
probabilistic distribution over pixels and labels. However, adapting the model from 2D pixel data
to 3D voxel data is non-trivial. A 3D voxel volume with reasonable resolution (say 48 × 48 × 48)
would have the same dimension of a high-res image (332 × 332). A fully connected DBN would
result in a huge number of parameters that are intractable to train effectively. Therefore, we propose
to use convolution to reduce model parameters by weight sharing. But different from typical convo-
lutional deep learning model (e.g. [17]), we don’t introduce any kind of pooling in hidden layers,
because although pooling may give us invariance properties for recognition, it will also give us more
uncertainty during reconstruction, which is important for next-best-view prediction.

The energy of a convolutional layer in our model is defined as:

E(v,h) = −
∑
f

∑
j

(
hf
j

(
W f ∗ v

)
j
+ cfhf

j

)
−
∑
l

blvl (1)

where vl denotes each visible unit, hf
j denotes each hidden unit in a feature channel f , W f denotes

the convolutional filter. The “∗” sign represents convolution operation. In this energy definition,
each visible unit vl is associated with a unique bias term bl to facilitate reconstruction, and all
hidden units {hf

j } in the same convolution channel share the same bias term cf . We also allow
convolution stride as in [15].

A 3D shape is represented as a 42 × 42 × 42 voxel grid with 3 extra cells of empty space on both
direction for padding to reduce convolution border artifacts. The labels are presented as standard
one of K softmax variables. All of our training data are manually aligned to the same direction. The
final architecture of our model is in Figure 2(a). The first layer has 80 filters of size 6 and stride 3;
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Figure 3: View-based 2.5D Object Recognition. (1) illustrates that a depth map taken from a
physical object in the 3D world. (2) shows the depth image captured from the back of the chair. A
slice is used for visualization. (3) shows the profile of the slice and different types of voxels. The
surface voxels of the chair xo are in red, and the occluded voxels xu are in blue. (4) shows the
recognition and shape completion result, conditioned on the observed free space and surface.

the second layer has 320 filters of size 5 and stride 2 (i.e. each filter has 80×5×5×5 parameters); the
third layer has 640 filters of size 4; each convolution filter is connected to all the feature channels
in the previous layer; the following two layers are standard fully connected RBM with 3000 and
1000 hidden units; the last layer takes the input as a combination of multinomial label variables
and Bernoulli feature variables. The top layer forms an associate memory and all the other layer
connections are directed top-down.

We train the deep model in a layer-wise pre-training fashion followed by a generative fine-tuning
procedure. During pre-training, the lower four layers are trained using standard Contrastive Diver-
gence [11], while the top layer is trained more carefully using FPCD [25]. Once the lower layer is
learned, the weights are fixed and the hidden activations are fed into the next layer as input. Our
fine-tuning procedure is similar to wake sleep algorithm [12] except that we keep the weight tied.
In the wake phase, we propagate the data bottom up and use the activations to collect the positive
learning signal; In the sleep phase, we maintain a persistent chain on the topmost layer and prop-
agate the data top down to collect the negative learning signal. This fine-tuning procedure mimics
the recognition and generation behavior of the model and works well in practice. We find that this
overall generative fine-tuning is critical for shape completion performance. Some examples of the
learned filters are shown in Figure 2(b).

During pre-training of the first layer, we collect learning signal only to receptive fields which are
non-empty. Because of the nature of data, empty spaces occupy a large portion of the whole volume,
which has no information for RBM and would distract the learning. Our experiment shows that ig-
noring those learning signals during gradient computation results in more meaningful filters. During
pre-training of the first two layers, we add sparsity regularization to encourage the mean activity
of hidden unit over training samples to a small constant (we follow the method of [16].) During
pre-training of the topmost RBM where the joint distribution of labels and high-level abstractions
are learned, we duplicate the label units by a factor of 10 to increase the significancy of the labels.

3 View-based 2.5D Object Recognition
After training the CDBN, the model learns the joint distribution p(x, y) of voxel data x and object
category label y ∈ {1, · · · ,K}. Although the model is trained on complete 3D shapes, it is able
to recognition objects in a single-view 2.5D depth map (e.g. from RGB-D sensors). As shown in
Figure 3, the 2.5D depth map is firstly converted into a volumetric representation. We categorize
each voxel as free space, surface or occluded, depends on whether it is in front of, on, or behind the
visible surface (the depth value) from the depth map. The first two types of voxels are observed,
and the occluded voxels are regarded as missing data. The testing data is represented in the form
x = (xo,xu) where xo contains the observed free space and surface voxel, and xu represent the
unknown voxels. Recognizing the object category is to estimate p(y|xo).

We approximate the posterior distribution p(y|xo) by Gibbs sampling. The sampling procedure is
as follows. We first initialize xu to random value and propagate the data x = (xu,xo) bottom up
to sample for a label y from p(y|xu,xo). Then the high level signal is propagated down to sample
for voxels x. We clamp the observation xo to this sample x and do another bottom up pass. This
up-down sampling procedure runs for about 200 iterations and we can get the shape completion
result x and its corresponding label y. The above sampling procedure runs in parallel for a lot of
particles, and gives a variety of completion results corresponding to different classes.
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five different next-view candidates

3 possible shapes predicted new freespace & visible surface for each shape under each view

free space

Figure 4: Next-Best-View Prediction. [Row1 Col1]: the observed and unknown voxels from a
single view. [Row2-4 Col1]: three possible completion samples generated by condition on (xo,xu)
[Row1 Col2-6]: five possible camera positions Vi, front top, left-sided, tilted bottom, front, top.
[Row2-4 Col2-6]: predict what will happen from each view and each sample using rendering.

4 Next-Best-View Prediction for Recognition
Object recognition is sometimes very challenging. However, if it is allowed to observe the object
from another view point when the first recognition fails, we may be able to largely reduce the recog-
nition uncertainty. Our model is able to predict and choose which of such next views is the best for
discriminating the object category.

The inputs of our next-best-view system are observed voxels xo of an unknown object captured by
a depth camera from a single view, and a finite list of next-view candidates {Vi} represents camera
rotation and translation in 3D. An algorithm chooses the next-view from the list that has the highest
potential to reduce the recognition uncertainty most. Note that during this view planning process,
we do not gain any improvement on confidence of p(y|xo = xo) since we observe no new data.

The original recognition uncertainty is measured by the entropy of y conditioned on the observed
xo,

H = H (p(y|xo = xo)) = −
K∑

k=1

p(y = k|xo = xo)log p(y = k|xo = xo) (2)

where the conditional probability p(y|xo = xo) can be approximated as before by sampling from
p(y,xu|xo = xo) and marginalizing xu.

When the camera is moved to another view Vi, some of the previously unobserved voxels xu may
become observed, subjective to its actual shape. Different views Vi will cost different visibility
of these unobserved voxels xu. A view with the potential to see distinctive parts of objects (e.g.
arms of chairs) may be a better next view. But since the actual shape is partially unknown2, we will
hallucinate that region from our model. As shown in Figure 4, conditioning on xo = xo, we can
sample many shapes to generate hypotheses of the actual shape, and then render each hypothesis
to obtain the depth maps observed from different view Vi. In this way, we can simulate the new
depth maps for different views on different samples and compute the benefit on reducing recognition
uncertainty.

Mathematically, let xi
n = Render(xu,xo,V

i) \ xo to denote the new observed voxels (both free
space and surface) in the next view Vi. We have xi

n ⊆ xu, and they are unknown variables that
will be marginalized in the following equation. Then the potential recognition uncertainty for Vi is

2If the 3D shape is fully observed, adding more views will not help to reduce the recognition uncertainty in
any algorithm purely based on 3D shapes, including our 3D ShapeNets.
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Figure 5: ModelNet dataset. Left: visualization of the ModelNet dataset based on the number of
images in each category. Larger font size indicates more instances in the corresponding category.
Right: examples of 3D models from different categories.
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Figure 6: Results. Left: Example shapes generated by sampling our 3D ShapeNets for each cate-
gory. Right: Precision-recall curves and average precision [in brackets] for 3D mesh retrieval.

measured by this conditional entropy,

Hi = H
(
p(y|xi

n,xo = xo)
)
=
∑
xi
n

p(xi
n|xo = xo)H(y|xi

n,xo = xo). (3)

The above conditional entropy could be calculated by first sampling enough xu from p(xu|xo = xo),
do the 3D rendering to obtain 2.5D depth map in order to get xi

n from xu, and then take each xi
n to

calculate H(y|xi
n = xi

n,xo = xo) as before.

According to information theory, the reduction of entropy H −Hi = I(y;xi
n|xo = xo) ≥ 0 is the

mutual information between y and xi
n conditioned on xo. This meets our intuition that observing

more data will always potentially reduce the uncertainty. With this definition, our view planning
algorithm is simply to choose the view that can maximize this mutual information,

V∗ = argmaxViI(y;xi
n|xo = xo). (4)

Our view planning scheme can be naturally extended for a sequence of view planning steps. After
deciding the best candidate to move for the first frame, we physically move the camera there and
capture the other object surface from that view. The object surfaces from all previous history are
merged together as our new observation xo, and then run our view planning scheme again.

5 Princeton ModelNet: A Large-scale 3D CAD Object Dataset
Training a 3D shape model that captures intra-class variance requires a large collection of 3D shapes.
Previous CAD datasets (e.g. [22]) are limited both by category varieties and data size per category.
Therefore, we construct a new large scale 3D CAD model data set named ModelNet.

To construct ModelNet, we download 3D models from Google 3D Warehouse by querying object
category names. We query categories that are common object categories in SUN database [26] with
no less than 20 object instances per category, and remove ones with too few searching results, re-
sulting in 585 remaining categories. We also include models from Princeton Shape Benchmark [22].
After downloading, we remove models not belonging to their labelled categories. This step is done
in Amazon Mechanical Turk, in which turkers are shown a sequence of thumbnails of the models
and answer “Yes” or “No” to whether their category label is correct. The authors then manually
check each 3D model and remove irrelevant objects in each CAD model (e.g, floor, thumbnail im-
age, person standing next to the object), so that each mesh model contains only one object belongs
to the labelled category. We also discard unrealistic (overly simplified models or ones that only
contain images of the object) and duplicated meshes. Comparing with [22], which consists of 6670
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bathtub bed chair desk dresser monitor nightstand sofa table toilet all
[23] Depth 0.000 0.729 0.806 0.100 0.466 0.222 0.343 0.481 0.415 0.200 0.376

ICP 0.142 0.445 0.322 0.125 0.200 0.333 0.625 0.253 0.155 0.200 0.280
3D ShapeNets 0.142 0.500 0.685 0.100 0.366 0.500 0.719 0.277 0.377 0.700 0.437

[23] RGB 0.142 0.743 0.766 0.150 0.266 0.166 0.218 0.313 0.376 0.200 0.334
[23] RGBD 0.000 0.743 0.693 0.175 0.466 0.388 0.468 0.602 0.441 0.500 0.448

Table 1: Accuracy for View-based 2.5D Recognition on NYU dataset [19]. The first three rows
are algorithms that use only depth information. The last two rows are algorithms that use color
information. Our 3D ShapeNets performs the best among all depth-based algorithms, and very
close to [23] that used both RGB color and depth.

GT:     sofa
Ours: sofa
[23]:   sofa

GT:     table
Ours: table
[23]:   table

GT:     chair
Ours: desk
[23]:   nightstand

GT:     chair
Ours: chair
[23]:   monitor

GT:     monitor
Ours: monitor
[23]:   chair

GT:     dresser
Ours: chair
[23]:   dresser

GT:     desk
Ours: table
[23]:   desk

GT:     dresser
Ours: desk
[23]:   nightstand

Ours is 
correct

Ours is 
wrong

gnorw si ]32[tcerroc si ]32[

Figure 7: Success and failure examples of 2.5D Kinect-based object recognition on NYU dataset
[19]. In each example, we show the color, the depth map, and the completed shape by 3D ShapeNets.

models in 161 categories, our new dataset which is 19 times larger contains 127,915 3D meshes in
585 categories. Example of major object categories and dataset statistics are shown in Figure 5.

6 Experiments
To have the same categories with NYU Depth V2 dataset [19], we choose 10 common indoor object
categories (see Figure 6) from ModelNet with 4899 CAD models. 3899 models are used for training
and 1000 models (100 per category) are used for testing in Section 6.1. Pre-training and fine-tuning
each took about two days on a Intel XEON E5-2690 CPU and a NVIDIA K40c GPU. Figure 6 shows
some shapes sampled from our trained model.

6.1 3D Shape Classification and Retrieval
Deep learning has been widely used as a feature extraction technique. Here, we are also interested
in how well the feature learned from 3D ShapeNets compared with other state-of-the-art 3D mesh
features. After training the 3D ShapeNets, we use the top three layer activations as our feature
separately for evaluation. When propagating the data upward, we set the labels to zeros so the
features do not explicitly contain label information.

For comparison, we choose Light Field descriptor [5] (4700 dimensions) and Spherical Harmonic
descriptor [14] (28672 dimensions), which performed best among all descriptors [22]. 3D classifi-
cation and retrieval experiments are conducted to evaluate our features. For classification, we use
linear SVM to train classifiers for each feature to calculate the classification accuracy on the testing
set. Our 3D ShapeNets feature achieves an accuracy of 86.5%, 83.7% and 82.0% for the 5th, 6th and
7th layer, while Light Field [5] achieves 86.1% and Spherical Harmonic [14] achieves 82.0%. For
retrieval, similarity is measured by the L2 distance of shape descriptors between any testing pairs.
Given a query from the testing set, a ranked list of remaining testing data is returned according to the
similarity measure. The retrieval performance is evaluated by a precision recall curve in Figure 6.
Both experiments show that our 3D ShapeNets is able to learn features comparable to state-of-the-art
hand-crafted features.

6.2 View-based 2.5D Recognition
To evaluate 3D ShapeNets for 2.5D depth-based object recognition tasks, we set up an experiment
on NYU RGBD dataset with Kinect depth maps [19]. We choose the same 10 categories from NYU
and create each testing example by cropping the 3D point cloud from the 3D bounding boxes. Since
the model is trained with aligned data while the pose of testing set are arbitrary, we need to firstly
estimate the object pose. To do this, we run our recognition algorithm on every possible pose, and
choose the one whose completion samples have the highest free energy3 as the correct pose [10].

As a baseline method, we match the testing point cloud to each our 3D mesh models using Iterated
Closest Point method [3] and use the first top 10 matches to predict the labels. We also compare our

3Free energy of RBM: F (x) = −log
(∑

h
e−E(x,h)

)
, the negative logarithm of unnormalized probability.
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Input GT 3D ShapeNets completion result NN Input GT 3D ShapeNets completion result NN

Figure 8: Shape Completion. From left to right: input depth map from a single view, ground truth
shape, shape completion result (4 examples), nearest neighbor result (1 example).

bathtub bed chair desk dresser monitor nightstand sofa table toilet all
Ours 0.8 0.9 0.8 0.8 0.2 1.0 0.8 0.7 1.0 0.7 0.77

Max Visibility 0.6 0.9 0.8 0.6 0.3 1.0 0.8 0.7 1.0 0.7 0.74
Furthest Away 0.3 0.7 0.8 0.7 0.3 1.0 0.7 0.5 0.9 0.6 0.65

Random Selection 0.3 0.9 0.8 0.6 0.3 1.0 0.5 0.4 0.9 0.7 0.64

Table 2: Comparison of Different Next-Best-View Selections Based on Recognition Accuracy
from Two Views. Based on the algorithms’ choice, we obtain the actual depth map for the next
view and recognize the objects using two views by our 3D ShapeNets to compute the accuracies.

result with [23] which is the state-of-the-art deep learning model applied on RGB-D data. To train
and test their model, the 2D bounding box is obtained by projecting the 3D bounding box to the
image plane, and the object segmentation is also used to extract features. 1390 instances are used
to train the algorithm of [23], and the other 495 instances are used for testing all three methods. As
shown in Table 1, by only using the depth information, our algorithm can predict a 3D pose and
achieve a similar recognition accuracy as [23] which use both RGB color and depth. Figure 7 shows
the visualization for success and failure cases.

6.3 Next-Best-View Prediction
For our view planning strategy, computation of the term p(xi

n|xo = xo) is critical. When the
observation xo is ambiguous, samples drawn from p(xi

n|xo = xo) should have varieties across
different categories. When the observation is rich, samples should be limited to very few categories.
Since xi

n is the surface of the completions, we could just test the shape completion performance
p(xu|xo = xo). In Figure 8, our results give reasonable shapes across different categories. We also
match the nearest neighbor in the training set to show that our algorithm is not just memorizing the
shape and it can generalize well.

To evaluate our view planning strategy, we use CG models from the test set to create synthetic
rendering of depth maps. We evaluate the accuracy by running our 3D ShapeNets model on the
integration depth maps of both the first view and the selected second view. A good view-planning
strategy will result in a better recognition accuracy. Note that next-best-view selection is always
coupled with the recognition algorithm. We prepare three baseline methods for comparison : 1)
random selection among the candidate views. 2) choose the view with the highest new visibility
(yellow voxels, NBV for reconstruction). 3) choose the view which is furthest away with previous
view (based on camera center distance). In our experiment, we generate 8 view candidates randomly
distributed on the sphere of the object, pointing to the region near the object center. And we ran-
domly choose 100 testing examples (10 for each category) from our testing set. Table 2 reports the
recognition accuracy of different view planning strategies with the same recognition 3D ShapeNets.
We can see that our entropy based strategy is the best for selecting new views.

7 Conclusion
To study 3D shape representation for objects, we propose a convolutional deep belief network to rep-
resent a geometric 3D shape as a probability distribution of binary variables on a 3D voxel grid. We
construct a large-scale 3D CG dataset to train our model, and use it to recognize objects in a single-
view 2.5D depth map (e.g. from popular RGB-D sensors). Besides it outperforms state-of-the-art
algorithms in our experiments, it also supports next-best-view planning for object recognition. Fu-
ture work includes constructing a large-scale Kinect-based 2.5D dataset so that we can train 3D
ShapeNets with all categories from ModelNet and properly evaluate it using this 2.5D dataset.
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